Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Radial bunch compression: Path-length compensation in an rf photoinjector with a curved cathode

de Loos, M.J. and van der Geer, S.B. and Saveliev, Y.M. and Pavlov, V.M. and Reitsma, A.J.W. and Wiggins, S.M. and Rodier, J. and Garvey, T. and Jaroszynski, D.A. (2006) Radial bunch compression: Path-length compensation in an rf photoinjector with a curved cathode. Physical Review Special Topics: Accelerators and Beams, 9 (8). 084201-1-084201-7. ISSN 1098-4402

Full text not available in this repository. Request a copy from the Strathclyde author


Electron bunch lengthening due to space-charge forces in state-of-the-art rf photoinjectors limits the minimum bunch length attainable to several hundreds of femtoseconds. Although this can be alleviated by increasing the transverse dimension of the electron bunch, a larger initial radius causes path-length differences in both the rf cavity and in downstream focusing elements. In this paper we show that a curved cathode virtually eliminates these undesired effects. Detailed numerical simulations confirm that significantly shorter bunches are produced by an rf photogun with a curved cathode compared to a flat cathode device. The proposed novel method will be used to provide 100 fs duration electron bunches for injection into a laser-driven plasma wakefield accelerator.