Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Experimental and theoretical studies of a coaxial free-electron maser based on two-dimensional distributed feedback

Konoplev, I.V. and Cross, A.W. and Phelps, A.D.R. and He, W. and Ronald, K. and Whyte, C.G. and Robertson, C.W. and MacInnes, P. (2007) Experimental and theoretical studies of a coaxial free-electron maser based on two-dimensional distributed feedback. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 76 (5). 056406. ISSN 1063-651X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The first operation of a coaxial free-electron maser (FEM) based on two-dimensional (2D) distributed feedback has been recently observed. Analytical and numerical modeling, as well as measurements, of microwave radiation generated by a FEM with a cavity defined by coaxial structures with a 2D periodic perturbation on the inner surfaces of the outer conductor were carried out. The two-mirror cavity was formed with two 2D periodic structures separated by a central smooth section of coaxial waveguide. The FEM was driven by a large diameter (7 cm), high-current (500 A), annular electron beam with electron energy of 475 keV. Studies of the FEM operation have been conducted. It has been demonstrated that by tuning the amplitude of the undulator or guide magnetic field, modes associated with the different band gaps of the 2D structures were excited. The Ka-band FEM generated 15 MW of radiation with a 6% conversion efficiency, in good agreement with theory.