Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Role of insulin-like growth factor binding proteins in mammary gland development

Flint, D.J. and Tonner, E. and Beattie, J. and Allan, G.J. (2008) Role of insulin-like growth factor binding proteins in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 13 (4). pp. 443-453. ISSN 1083-3021

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Insulin-like growth factors (IGFs) play an important role in mammary gland development and their effects are, in turn, influenced by a family of 6 IGF-binding proteins (IGFBPs). The IGFBPs are expressed in time- and tissue-specific fashion during the periods of rapid growth and involution of the mammary gland. The precise roles of these proteins in vivo have, however, been difficult to determine. This review examines the indirect evidence (evolution, chromosomal location and roles in lower life-forms) the evidence from in vitro studies and the attempts to examine their roles in vivo, using IGFBP-deficient and over-expression models. Evidence exists for a role of the IGFBPs in inhibition of the survival effects of IGFs as well as in IGF-enhancing effects from in vitro studies. The location of the IGFBPs, often associated with the extracellular matrix, suggests roles as a reservoir of IGFs or as a potential barrier, restricting access of IGFs to distinct cellular compartments. We also discuss the relative importance of IGF-dependent versus IGF-independent effects. IGF-independent effects include nuclear localization, activation of proteases and interaction with a variety of extracellular matrix and cell surface proteins. Finally, we examine the increasing evidence for the IGFBPs to be considered as part of a larger family of extracellular matrix proteins involved in morphogenesis and tissue re-modeling.