Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

A study of the dynamic interaction of surfactants with graphite and carbon nanotubes using Fmoc-amino acids as a model system

Li, Y.N. and Cousins, B.G. and Ulijn, R.V. and Kinloch, I.A. (2009) A study of the dynamic interaction of surfactants with graphite and carbon nanotubes using Fmoc-amino acids as a model system. Langmuir, 25 (19). pp. 11760-11767. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author


We have studied the dynamic interaction of surfactants with carbon surfaces by using a series of Fmoc- (N-(fluorenyl-9-methoxycarbonyl)) terminated amino acid derivatives (Fmoc−X, where X is glycine, tyrosine, phenylalanine, tryptophan, or histidine) as a model system. In these systems, highly conjugated fluorenyl groups and aromatic amino acid side chains interact with the carbon surface, while carboxylate groups provide an overall negative charge. Ideal carbon surfaces were selected which possessed either predominantly macroscale (graphite) or nanoscale features (multiwalled carbon nanotube (MWNT) mats). The adsorption equilibrium for the Fmoc−X solutions with the graphitic surfaces was well-described by the Freundlich model. When a library containing various Fmoc−X compounds were exposed to a target graphite surface, Fmoc−tryptophan was found to bind preferentially at the expense of the other components present, leading to a substantial difference in the observed binding behavior compared to individual adsorption experiments. This approach therefore provides a straightforward means to identify good surfactants within a library of many candidates. Finally, the fully reversible nature of Fmoc−X binding was demonstrated by switching the surface chemistry of carbon substrate through sequential exposure to surfactants with increasing binding energies.