Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Fmoc-diphenylalanine self-assembly mechanism induces apparent pk(a) shifts

Tang, C. and Smith, A.M. and Collins, R.F. and Ulijn, R.V. and Saiani, A. (2009) Fmoc-diphenylalanine self-assembly mechanism induces apparent pk(a) shifts. Langmuir, 25 (16). pp. 9447-9453. ISSN 0743-7463

Full text not available in this repository. Request a copy from the Strathclyde author


We report the effect of pH on the self-assembly process of Fmoc-diphenylalanine (Fmoc-FF) into fibrils consisting of antiparallel β-sheets, and show that it results in two apparent pKa shifts of 6.4 and 2.2 pH units above the theoretical pKa (3.5). Using Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), wide angle X-ray scattering (WAXS), and oscillatory rheology, these two transitions were shown to coincide with significant structural changes. An entangled network of flexible fibrils forming a weak hydrogel dominates at high pH, while nongelling flat rigid ribbons form at intermediate pH values. Overall, this study provides further understanding of the self-assembly mechanism of aromatic short peptide derivatives.