Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Maskless ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes

Elfstrom, D. and Guilhabert, B.J.E. and McKendry, J. and Poland, S.P. and Gong, Z. and Massoubre, D. and Valentine, G.J. and Gu, E. and Dawson, M.D. and Richardson, E. and Rae, B.R. and Blanco-Gomez, G. and Cooper, J.M. and Henderson, R.K. (2009) Maskless ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes. Optics Express, 17 (26). pp. 23522-23529. ISSN 1094-4087

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370 nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8 W/cm2 per imaged pixel in circular spots of diameter approximately 8 microm. We show example structures written in positive as well as in negative photoresist.