Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Maskless ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes

Elfstrom, D. and Guilhabert, B.J.E. and McKendry, J. and Poland, S.P. and Gong, Z. and Massoubre, D. and Valentine, G.J. and Gu, E. and Dawson, M.D. and Richardson, E. and Rae, B.R. and Blanco-Gomez, G. and Cooper, J.M. and Henderson, R.K. (2009) Maskless ultraviolet photolithography based on CMOS-driven micro-pixel light emitting diodes. Optics Express, 17 (26). pp. 23522-23529. ISSN 1094-4087

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370 nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8 W/cm2 per imaged pixel in circular spots of diameter approximately 8 microm. We show example structures written in positive as well as in negative photoresist.