Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Occupant behaviour in naturally ventilated and hybrid buildings

Tuohy, P.G. and Humphreys, M.A. and Nicol, F. and Rijal, H.B. and Clarke, J.A. (2009) Occupant behaviour in naturally ventilated and hybrid buildings. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) Transactions, 115 (1). pp. 16-27. ISSN 0001-2505

[img]
Preview
Text (strathprints016470)
strathprints016470.pdf - Accepted Author Manuscript

Download (256kB) | Preview

Abstract

Adaptive thermal comfort criteria for building occupants are now becoming established. In this paper we illustrate their use in the prediction of occupant behaviour and make a comparison with a non-adaptive temperature threshold approach. A thermal comfort driven adaptive behavioural model for window opening is described and its use within dynamic simulation illustrated for a number of building types. Further development of the adaptive behavioural model is suggested including use of windows, doors, ceiling fans, night cooling, air conditioning and heating, also the setting of opportunities and constraints appropriate to a particular situation. The integration in dynamic simulation of the thermal adaptive behaviours together with non-thermally driven behaviours such as occupancy, lights and blind use is proposed in order to create a more complete model of occupant behaviour. It is further proposed that this behavioural model is implemented in a methodology that includes other uncertainties (e.g. in internal gains) so that a realistic range of occupant behaviours is represented at the design stage to assist in the design of robust, comfortable and low energy buildings.