Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Optimal impact strategies for asteroid deflection

Vasile, Massimiliano and Colombo, Camilla (2008) Optimal impact strategies for asteroid deflection. Journal of Guidance, Control and Dynamics, 31 (4). pp. 858-872. ISSN 1533-3884

[img]
Preview
PDF (Colombo_C_-_strathprints_-_Optimal_Impact_Strategies_for_Asteroid_Deflection.pdf)
Colombo_C_-_strathprints_-_Optimal_Impact_Strategies_for_Asteroid_Deflection.pdf
Accepted Author Manuscript

Download (740kB)| Preview

    Abstract

    This paper presents an analysis of optimal impact strategies to deflect potentially dangerous asteroids. To compute the increase in the minimum orbit intersection distance of the asteroid due to an impact with a spacecraft, simple analytical formulas are derived from proximal motion equations. The proposed analytical formulation allows for an analysis of the optimal direction of the deviating impulse transferred to the asteroid. This ideal optimal direction cannot be achieved for every asteroid at any time; therefore, an analysis of the optimal launch opportunities for deviating a number of selected asteroids was performed through the use of a global optimization procedure. The results in this paper demonstrate that the proximal motion formulation has very good accuracy in predicting the actual deviation and can be used with any deviation method because it has general validity. Furthermore, the characterization of optimal launch opportunities shows that a significant deviation can be obtained even with a small spacecraft.