Picture of offices in the City of London

Open Access research that is better understanding work in the global economy...

Strathprints makes available scholarly Open Access content by researchers in the Department of Work, Employment & Organisation based within Strathclyde Business School.

Better understanding the nature of work and labour within the globalised political economy is a focus of the 'Work, Labour & Globalisation Research Group'. This involves researching the effects of new forms of labour, its transnational character and the gendered aspects of contemporary migration. A Scottish perspective is provided by the Scottish Centre for Employment Research (SCER). But the research specialisms of the Department of Work, Employment & Organisation go beyond this to also include front-line service work, leadership, the implications of new technologies at work, regulation of employment relations and workplace innovation.

Explore the Open Access research of the Department of Work, Employment & Organisation. Or explore all of Strathclyde's Open Access research...

A computational fluid dynamics evaluation of a pneumatic safety relief valve

Dempster, W.M. and Elmayyah, W. (2008) A computational fluid dynamics evaluation of a pneumatic safety relief valve. In: 13th International Conference on Applied Mechanics and Mechanical Engineering (AMME-13), 2008-05-27 - 2008-05-29.

Text (strathprints016327)
Accepted Author Manuscript

Download (549kB) | Preview


Safety relief valves are well established components preventing catastrophic failure of pressurised systems when non-normal operating conditions occur. However, it is only recently with developments in CFD techniques that the capability to predict the complex flow conditions occurring in the valves has been possible resulting in only limited studies being found in the literature. This paper presents experimental and theoretical investigations applied to a safety relief valve designed for the refrigeration industry but extended here to consider pneumatic systems since air is the compressible fluid. The discharge flow rate and valve forces are determined both theoretically and experimentally for different valve lift conditions and related to the detailed flow conditions (pressure, temperature and Mach number) in the valve predicted by CFD techniques. The CFD code FLUENT has been used with a two dimensional axisymmetric RANS approach using the k-İ turbulent model to predict the highly compressible flow through the valve. The model has been validated by comparison with experimental measurements and the predicted results show good agreement, providing confidence in the use of CFD techniques for valve design and improvement.