Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Integrable quadratic Hamiltonians on the Euclidean group of motions

Biggs, James and Holderbaum, William (2010) Integrable quadratic Hamiltonians on the Euclidean group of motions. Journal of Dynamical and Control Systems, 16 (3). pp. 301-317. ISSN 1079-2724

[img]
Preview
Text (strathprints016316)
strathprints016316.pdf - Accepted Author Manuscript

Download (113kB) | Preview

Abstract

This paper tackles the problem of globally computing sub-Riemannian curves on the Euclidean group of motions SE(3). In particular we derive a global result for special sub-Riemannian curves for which their Hamiltonian satisfies a particular condition. The sub-Riemannian curves in this paper are defined in the context of a constrained optimal control problem. The Maximun Principle is then applied to this problem to yield the appropriate left-invariant quadratic Hamiltonian. A number of integrable quadratic Hamiltonians are identified. We then proceed to derive convenient expressions for sub-Riemannian curves in SE(3) that correspond to particular extreme curves. These equations are then used to compute sub-Riemannian curves that could potentially be used for motion planning of underwater vehicles.