Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Induced encystment improves resistance to preservation and storage of Acanthamoeba castellanii

Campbell, S.J. and Ingram, P.R. and Roberts, C.W. and Henriquez, F.L. (2008) Induced encystment improves resistance to preservation and storage of Acanthamoeba castellanii. Parasitology, 135 (12). pp. 1401-1405. ISSN 0031-1820

[img]
Preview
PDF (S0031182008005003a)
S0031182008005003a.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial 4.0 logo

Download (66kB) | Preview

Abstract

Several conditions that allow the preservation, storage and rapid, efficient recovery of viable Acanthamoeba castellanii organisms were investigated. The viability of trophozoites (as determined by time to confluence) significantly declined over a period of 12 months when stored at −70°C using dimethyl sulfoxide (DMSO; 5 or 10%) as cryopreservant. As A. castellanii are naturally capable of encystment, studies were undertaken to determine whether induced encystment might improve the viability of organisms under a number of storage conditions. A. castellanii cysts stored in the presence of Mg2+ at 4°C remained viable over the study period, although time to confluence was increased from approximately 8 days to approximately 24 days over the 12-month period. Storage of cysts at −70°C with DMSO (5 or 10%) or 40% glycerol, but not 80% glycerol as cryopreservants increased their viability over the 12-month study period compared with those stored at room temperature. Continued presence of Mg2+ in medium during storage had no adverse effects and generally improved recovery of viable organisms. The present study demonstrates that A. castellanii can be stored as a non-multiplicative form inexpensively, without a need for cryopreservation, for at least 12 months, but viability is increased by storage at −70°C.