Neurotrophic actions of PACAP and LIF on human neuroblastoma SH-SY5Y cells

Monaghan, T.K. and Pou, C. and MacKenzie, C.J. and Plevin, R. and Lutz, E. M. (2008) Neurotrophic actions of PACAP and LIF on human neuroblastoma SH-SY5Y cells. Journal of Molecular Neuroscience, 36 (1-3). pp. 45-56. ISSN 0895-8696 (http://dx.doi.org/10.1007/s12031-008-9082-6)

Full text not available in this repository.Request a copy

Abstract

The neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP)-38 and leukemia inhibitory factor (LIF) were investigated in human neuroblastoma SH-SY5Y cells. Effects on differentiation were assessed through monitoring morphological changes and Western blot analysis of the expression of neuronal marker proteins. In contrast to PACAP-38, which induced a 5.5-fold increase in the number of neurite-bearing cells, LIF had no significant effect on cell morphology compared to control cells over the 4-day time course. Cells co-treated with PACAP-38+LIF showed a similar increase in neurite-bearing cells compared to those treated with PACAP-38 alone. Cell morphology was similar for PACAP-38-treated and PACAP-38+LIF-co-treated cells, with the formation of bipolar neuron-like cells with long thin neurites, topped by growth cone-like structures and varicosities. SH-SY5Y cells express tyrosine hydroxylase (TH) but only low levels of the neuronal marker proteins: Bcl-2, GAP-43 and choline acetyltransferase (ChAT). Treatment of cells with PACAP-38 induced the expression of Bcl-2, GAP-43, and ChAT but did not appear to alter the expression of TH. LIF failed to induce the expression of GAP-43 and had little effect on the expression of TH, but did induce the expression of Bcl-2 and upregulated the expression of ChAT. Co-treatment with LIF had no effect on PACAP-38-induced expression of Bcl-2, GAP-43, and ChAT. Cells differentiated for 4 days with PACAP-38 or treated with LIF also displayed increased resistance to hypoxic conditions and to treatment with H2O2 and TNFα. The increased resistance to hypoxic conditions for PACAP-differentiated cells was blocked by the p38 MAP kinase inhibitor, SB203580, but not by the MEK1 inhibitor, PD98059. Additionally, cell proliferation assays show that LIF, but not PACAP-38, stimulates proliferation of SH-SY5Y cells, and this observed increase by LIF is not attenuated by co-treatment with PACAP. Further investigation of the intracellular signaling pathways mediating the neurotrophic effects of PACAP on SH-SY5Y cells indicate that neither phospholipase C activation nor Ca2+/calmodulin-dependent kinase II (CAMKII) are involved.

ORCID iDs

Monaghan, T.K., Pou, C., MacKenzie, C.J., Plevin, R. ORCID logoORCID: https://orcid.org/0000-0002-7849-1220 and Lutz, E. M.;