Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Modelling the number of customers as a birth and death process

Pinto, H. and Howell, S. and Paxson, D. (2009) Modelling the number of customers as a birth and death process. European Journal of Finance, 15 (2). pp. 105-118. ISSN 1351-847X

Full text not available in this repository. Request a copy from the Strathclyde author


Birth and death may be a better model than Brownian motion for many physical processes, which real options models will increasingly need to deal with. In this paper, we value a perpetual American call option, which gives the monopoly right to invest in a market in which the number of active customers (and hence the sales rate) follows a birth and death process. The problem contains a singular point, and we develop a mixed analytic/numeric method for handling this singular point, based on the method of Frobenius. The method may be useful for other cases of singular points. The birth and death model gives lower option values than the geometric Brownian motion model, except at very low volatilities, so that if a firm incorrectly assumes a geometric Brownian motion process in place of a birth and death process, it will invest too seldom and too late.