New insights on growth mechanisms of protein clusters at surfaces : an AFM and simulation study
Pellenc, D. and Bennett, R.A. and Green, R.J. and Sperrin, M. and Mulheran, P.A. (2008) New insights on growth mechanisms of protein clusters at surfaces : an AFM and simulation study. Langmuir, 24 (17). pp. 9648-9655. ISSN 0743-7463 (https://doi.org/10.1021/la801246k)
Full text not available in this repository.Request a copyAbstract
Despite its relevance to a wide range of technological and fundamental areas, a quantitative understanding of protein surface clustering dynamics is often lacking. In inorganic crystal growth, surface clustering of adatoms is well described by diffusion-aggregation models. In such models, the statistical properties of the aggregate arrays often reveal the molecular scale aggregation processes. We investigate the potential of these theories to reveal hitherto hidden facets of protein clustering by carrying out concomitant observations of lysozyme adsorption onto mica surfaces, using atomic force microscopy. and Monte Carlo simulations of cluster nucleation and growth. We find that lysozyme clusters diffuse across the substrate at a rate that varies inversely with size. This result suggests which molecular scale mechanisms are responsible for the mobility of the proteins on the substrate. In addition the surface diffusion coefficient of the monomer can also be extracted from the comparison between experiments and simulations. While concentrating on a model system of lysozyme-on-mica, this 'proof of concept' study successfully demonstrates the potential of our approach to understand and influence more biomedically applicable protein-substrate couples.
ORCID iDs
Pellenc, D., Bennett, R.A., Green, R.J., Sperrin, M. and Mulheran, P.A. ORCID: https://orcid.org/0000-0002-9469-8010;-
-
Item type: Article ID code: 15112 Dates: DateEvent2008Published1 August 2008Published OnlineSubjects: Science > Chemistry > Physical and theoretical chemistry
Science > Physics > Solid state physics. NanoscienceDepartment: Faculty of Engineering > Chemical and Process Engineering Depositing user: Dr Paul A Mulheran Date deposited: 04 Feb 2010 11:53 Last modified: 03 Jan 2025 21:39 URI: https://strathprints.strath.ac.uk/id/eprint/15112