Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations

Barrenechea, Gabriel R. and Chouly, Franz (2009) A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations. Zeitschrift fur Angewandte Mathematik und Mechanik, 89 (1). pp. 54-68. ISSN 0044-2267

[img]
Preview
PDF (Barrenechea-Chouly.pdf)
Barrenechea-Chouly.pdf - Accepted Author Manuscript

Download (758kB) | Preview

Abstract

A finite element method to solve the bidimensional Reduced Navier-Stokes Prandtl (RNS/P) equations is described. These equations are an asymptotical simplification of the full Navier-Stokes equations, obtained when one dimension of the domain is of one order smaller than the others. These aretherefore of particular interest to describe flows in channels or pipes of small diameter. A low order finite element discretization, based on a piecewise constant approximation of the pressure, is proposed and analyzed. Numerical experiments which consist in fluid flow simulations within a constricted pipe are provided. Comparisons with Navier-Stokes simulations allow to evaluate the performance of prediction of the finite element method, and of the model itself.