Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids

Atrazhev, V. and Vorobev, V. and Timoshkin, I. and MacGregor, S.J. and Given, M.J. (2009) Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids. In: 17th IEEE International Pulsed Power Conference, 2009-06-28 - 2009-07-02.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents an analytical model which describes the dielectric strength of insulating liquids stressed with the impulse electric fields. The Joule heating by the space charge saturated current may cause over-heating of pure liquids or may result in generation of nucleation centers associated with impurities in the case of practical liquids. Evaporation of the liquid from these impurities has been analysed in the paper and formation criterion for percolation chains of gas bubbles in impure dielectric liquids has been established. Based on this percolation condition, the dielectric behavior of n-hexane has been studied. Breakdown volt-time characteristics of liquid n-hexane have been calculated for different temperatures, and its dielectric strength has been obtained as a function of externally applied pressure.