Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids

Atrazhev, V. and Vorobev, V. and Timoshkin, I. and MacGregor, S.J. and Given, M.J. (2009) Cavity initiation through an evaporating mechanism for the pulse breakdown in liquids. In: 17th IEEE International Pulsed Power Conference, 2009-06-28 - 2009-07-02.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents an analytical model which describes the dielectric strength of insulating liquids stressed with the impulse electric fields. The Joule heating by the space charge saturated current may cause over-heating of pure liquids or may result in generation of nucleation centers associated with impurities in the case of practical liquids. Evaporation of the liquid from these impurities has been analysed in the paper and formation criterion for percolation chains of gas bubbles in impure dielectric liquids has been established. Based on this percolation condition, the dielectric behavior of n-hexane has been studied. Breakdown volt-time characteristics of liquid n-hexane have been calculated for different temperatures, and its dielectric strength has been obtained as a function of externally applied pressure.