Automatic detection of limb prominences in 304 A EUV images
Labrosse, N. and Dalla, S. and Marshall, S. and Gray, N. (2009) Automatic detection of limb prominences in 304 A EUV images. In: Royal Astronomical Society National Astronomy Meeting 2009, 2009-04-20 - 2009-04-23, University of Hertfordshire.
Full text not available in this repository.Request a copyAbstract
A new algorithm for automatic detection of prominences on the solar limb in 304 Å EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as the starting point to reconstruct the whole prominence by morphological image-processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community.
ORCID iDs
Labrosse, N., Dalla, S., Marshall, S. ORCID: https://orcid.org/0000-0001-7079-5628 and Gray, N.;-
-
Item type: Conference or Workshop Item(Paper) ID code: 14678 Dates: DateEvent23 April 2009PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Strathprints Administrator Date deposited: 26 Oct 2010 15:49 Last modified: 11 Nov 2024 16:23 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/14678