Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

New periodic orbits in the solar sail three-body problem

Biggs, J.D. and Waters, T. and McInnes, C.R. (2011) New periodic orbits in the solar sail three-body problem. In: Nonlinear Science and Complexity. Springer, pp. 131-138. ISBN 9789048198832

[img]
Preview
PDF
Biggs_JD_McInnes_CR_strathprints_New_periodic_orbits_in_the_solar_sail_restricted_three_body_problem_2008.pdf
Preprint

Download (449kB) | Preview

Abstract

We identify displaced periodic orbits in the circular restricted three-body problem, wher the third (small) body is a solar sail. In particular, we consider solar sail orbits in the earth-sun system which are high above the exliptic plane. It is shown that periodic orbits about surfaces of artificial equilibria are naturally present at linear order. Using the method of Lindstedt-Poincare, we construct nth order approximations to periodic solutions of the nonlinear equations of motion. In the second part of the paper we generalize to the solar sail elliptical restricted three-body problem. A numerical continuation, with the eccentricity, e, as the varying parameter, is used to find periodic orbits above the ecliptic, starting from a known orbit at e=0 and continuing to the requied eccentricity of e=0.0167. The stability of these periodic orbits is investigated.