Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

How the parts organize in the whole : a top-downview of molecular descriptors and properties for QSARand drug design

Estrada, Ernesto, Ramon y Cajal program Spain (Funder) (2008) How the parts organize in the whole : a top-downview of molecular descriptors and properties for QSARand drug design. Mini-Reviews in Medicinal Chemistry, 8 (3). pp. 213-221. ISSN 1389-5575

[img]
Preview
PDF (Mini_Reviews-pdf.pdf)
Mini_Reviews-pdf.pdf - Accepted Author Manuscript

Download (949kB) | Preview

Abstract

Sometimes the complexity of a system, or the properties derived from it, do depend neither on the individual characteristics of the components of the system nor on the nature of the physical forces that hold them together. In such cases the properties derived from the 'organization' of the system given by the connectivity of its elements can be determinant for explaining the structure of such systems. Here we explore the necessity of accounting for these structural characteristics in the molecular descriptors. We show that graph theory is the most appropriate mathematical theory to account for such molecular features. We review a method (TOPS-MODE) that is able to transform simple molecular descriptors, such as logP, polar surface area, molar refraction, charges, etc., into series of descriptors that account for the distribution of these characteristics (hydrophobicity, polarity, steric effects, etc) across the molecule. We explain the mathematical and physical principles of the TOPS-MODE method and develop three examples covering the description and interpretation of skin sensitisation of chemicals, chromosome aberration produced by organic molecules and drug binding to human serum albumin.