Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

A delay differential equation mathematical model for the control of the hormonal system of the hypothalamus, the pituitary and the testis in man

Greenhalgh, David and Khan, Qamar J. A., Sultan Qaboos University, Oman (Funder) (2009) A delay differential equation mathematical model for the control of the hormonal system of the hypothalamus, the pituitary and the testis in man. Nonlinear Analysis: Theory, Methods and Applications, 71 (12). e925-e935. ISSN 0362-546X

[img]
Preview
PDF (strathprints014027.pdf)
strathprints014027.pdf - Accepted Author Manuscript

Download (296kB) | Preview

Abstract

In this paper we develop previously studied mathematical models of the regulation of testosterone by luteinizing hormone and luteinizing hormone release hormone in the human body. We propose a delay differential equation mathematical model which improves on earlier simpler models by taking into account observed experimental facts. We show that our model has four possible equilibria, but only one unique equilibrium where all three hormones are present. We perform stability and Hopf bifurcation analyses on the equilibrium where all three hormones are present. With no time delay this equilibrium is unstable, but as the time delay increases through an infinite sequence of positive values Hopf bifurcation occurs repeatedly. This is of practical interest as biological evidence shows that the levels of these hormones in the body oscillate periodically. We next discuss stability of the other equilibria heuristically using analytical methods. Then we describe simulations with realistic parameter values and show that our model can mimic the regular fluctuations of the three hormones in the body and explore numerically someof our heuristic conjectures. A brief discussion concludes the paper.