Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses

McKendry, Jonathan J. D. and Rae, Bruce R. and Gong, Zheng and Muir, Keith R. and Guilhabert, Benoit and Massoubre, David and Gu, Erdan and Renshaw, David and Dawson, Martin D. and Henderson, Robert K. (2009) Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses. IEEE Photonics Technology Letters, 21 (12). pp. 811-813. ISSN 1041-1135

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

We report the fabrication and characterization of an ultraviolet (370 nm) emitting AlInGaN-based micro-light- emitting diode (micro-LED) array integrated with complementary metal-oxide-semiconductor control electronics. This configuration allows an 8 × 8 array of micro-LED pixels, each of 72-mum diameter, to be individually addressed. The micro-LED pixels can be driven in direct current (dc), square wave, or pulsed operation, with linear feedback shift registers (LFSRs) allowing the output of the micro-LED pixels to mimic that of an optical data transmitter. We present the optical output power versus drive current characteristics of an individual pixel, which show a micro-LED output power of up to 570 muW in dc operation. Representative optical pulse trains demonstrating the micro-LEDs driven in square wave and LFSR modes, and controlled optical pulsewidths from 300 ps to 40 ns are also presented.