Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy
Gibson, G.M. and Leach, J. and Keen, S. and Wright, A.J. and Padgett, M.J. (2008) Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Optics Express, 16 (19). pp. 14561-14570. ISSN 1094-4087
Full text not available in this repository.Request a copy from the Strathclyde authorAbstract
We assess the performance of a CMOS camera for the measurement of particle position within optical tweezers and the associated autocorrelation function and power spectrum. Measurement of the displacement of the particle from the trap center can also be related to the applied force. By considering the Allan variance of these measurements, we show that such cameras are capable of reaching the thermal limits of nanometer and femtonewton accuracies, and hence are suitable for many of the applications that traditionally use quadrant photodiodes. As an example of a multi-particle measurement we show the hydrodynamic coupling between two particles.
Creators(s): | Gibson, G.M., Leach, J., Keen, S., Wright, A.J. and Padgett, M.J.; | Item type: | Article |
---|---|
ID code: | 13955 |
Keywords: | laser trapping, optical confinement, optical manipulation, optical tweezers, Optics. Light, Atomic and Molecular Physics, and Optics |
Subjects: | Science > Physics > Optics. Light |
Department: | Faculty of Science > Physics > Institute of Photonics |
Depositing user: | Miss Lisa Flanagan |
Date deposited: | 09 Dec 2009 15:41 |
Last modified: | 20 Jan 2021 18:09 |
URI: | https://strathprints.strath.ac.uk/id/eprint/13955 |
Export data: |