Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Kinetic isotope effect for H-2 and D-2 quantum molecular sieving in adsorption/desorption on porous carbon materials

Zhao, Xuebo and Villar-Rodil, Silvia and Fletcher, Ashleigh J. and Thomas, K. Mark (2006) Kinetic isotope effect for H-2 and D-2 quantum molecular sieving in adsorption/desorption on porous carbon materials. Journal of Physical Chemistry B, 110 (20). pp. 9947-9955. ISSN 1520-6106

Full text not available in this repository. Request a copy from the Strathclyde author


Adsorption and desorption of H-2 and D-2 from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H-2 and D-2 at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D-2 adsorption and desorption kinetics were significantly faster ( up to x 1.9) than the corresponding H-2 kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H-2, resulting in slower adsorption/desorption kinetics compared with the heavier D-2. The results are discussed in terms of the adsorption mechanism.