Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Kinetic isotope effect for H-2 and D-2 quantum molecular sieving in adsorption/desorption on porous carbon materials

Zhao, Xuebo and Villar-Rodil, Silvia and Fletcher, Ashleigh J. and Thomas, K. Mark (2006) Kinetic isotope effect for H-2 and D-2 quantum molecular sieving in adsorption/desorption on porous carbon materials. Journal of Physical Chemistry B, 110 (20). pp. 9947-9955. ISSN 1520-6106

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Adsorption and desorption of H-2 and D-2 from porous carbon materials, such as activated carbon at 77 K, are usually fully reversible with very rapid adsorption/desorption kinetics. The adsorption and desorption of H-2 and D-2 at 77 K on a carbon molecular sieve (Takeda 3A), where the kinetic selectivity was incorporated by carbon deposition, and a carbon, where the pore structure was modified by thermal annealing to give similar pore structure characteristics to the carbon molecular sieve substrate, were studied. The D-2 adsorption and desorption kinetics were significantly faster ( up to x 1.9) than the corresponding H-2 kinetics for specific pressure increments/decrements. This represents the first experimental observation of kinetic isotope quantum molecular sieving in porous materials due to the larger zero-point energy for the lighter H-2, resulting in slower adsorption/desorption kinetics compared with the heavier D-2. The results are discussed in terms of the adsorption mechanism.