Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Anisotropic creep model for soft soils

Leoni, Martino and Karstunen, Minna and Vermeer, Pieter, University of Stuttgart, University of Strathclyde, EC MRTN-CT-2004–512120 (Funder), Academy of Finland Grant 210744 (Funder) (2008) Anisotropic creep model for soft soils. Geotechnique, 58 (3). pp. 215-226. ISSN 0016-8505

[img]
Preview
Text (strathprints013489)
strathprints013489.pdf - Final Published Version

Download (379kB) | Preview

Abstract

In this paper a new anisotropic model for time-dependent behaviour of soft soils is presented. The formulation is based on a previously developed isotropic creep model, assuming rotated Modified Cam Clay ellipses as contours of volumetric creep strain rates. A rotational hardening law is adopted to account for changes in anisotropy due to viscous strains. Although this will introduce some new soil parameters, they do not need calibration as they can be expressed as functions of basic soil parameters through simple analytical expressions. To start with, the one-dimensional response of the model is discussed, making it possible to explore how the model is capable of capturing key features of viscous soft soil behaviour. Subsequently, the three-dimensional generalisation of the model is presented, followed by comparison with experimental data, showing good agreement in both triaxial undrained compression and extension. In the authors' opinion, the simple formulation of the model makes it attractive for use in engineering practice.