Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Anisotropic creep model for soft soils

Leoni, Martino and Karstunen, Minna and Vermeer, Pieter, University of Stuttgart, University of Strathclyde, EC MRTN-CT-2004–512120 (Funder), Academy of Finland Grant 210744 (Funder) (2008) Anisotropic creep model for soft soils. Geotechnique, 58 (3). pp. 215-226. ISSN 0016-8505

[img]
Preview
Text (strathprints013489)
strathprints013489.pdf
Final Published Version

Download (379kB) | Preview

Abstract

In this paper a new anisotropic model for time-dependent behaviour of soft soils is presented. The formulation is based on a previously developed isotropic creep model, assuming rotated Modified Cam Clay ellipses as contours of volumetric creep strain rates. A rotational hardening law is adopted to account for changes in anisotropy due to viscous strains. Although this will introduce some new soil parameters, they do not need calibration as they can be expressed as functions of basic soil parameters through simple analytical expressions. To start with, the one-dimensional response of the model is discussed, making it possible to explore how the model is capable of capturing key features of viscous soft soil behaviour. Subsequently, the three-dimensional generalisation of the model is presented, followed by comparison with experimental data, showing good agreement in both triaxial undrained compression and extension. In the authors' opinion, the simple formulation of the model makes it attractive for use in engineering practice.