Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Self-referential Monte Carlo method for calculating the free energy of crystalline solids

Sweatman, M.B. (2005) Self-referential Monte Carlo method for calculating the free energy of crystalline solids. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 72 (1). 016711-016718. ISSN 1063-651X

[img]
Preview
Text (strathprints013473)
strathprints013473.pdf
Accepted Author Manuscript

Download (101kB) | Preview

Abstract

A self-referential Monte Carlo method is described for calculating the free energy of crystalline solids. All Monte Carlo methods for the free energy of classical crystalline solids calculate the free-energy difference between a state whose free energy can be calculated relatively easily and the state of interest. Previously published methods employ either a simple model crystal, such as the Einstein crystal, or a fluid as the reference state. The self-referential method employs a radically different reference state; it is the crystalline solid of interest but with a different number of unit cells. So it calculates the free-energy difference between two crystals, differing only in their size. The aim of this work is to demonstrate this approach by application to some simple systems, namely, the face centered cubic hard sphere and Lennard-Jones crystals. However, it can potentially be applied to arbitrary crystals in both bulk and confined environments, and ultimately it could also be very efficient.