Synthesis of aromatase inhibitors and dual aromatase-sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities
Bubert, C. and Woo, L.W.L. and Sutcliffe, O.B. and Mahon, M.F. and Chander, S.K. and Purohit, A. and Reed, M.J. and Potter, B.V.L. (2008) Synthesis of aromatase inhibitors and dual aromatase-sulfatase inhibitors by linking an arylsulfamate motif to 4-(4H-1,2,4-triazol-4-ylamino)benzonitrile: SAR, crystal structures, in vitro and in vivo activities. ChemMedChem, 3 (11). pp. 1708-1730. ISSN 1860-7179 (http://dx.doi.org/10.1002/cmdc.200800164)
Full text not available in this repository.Request a copyAbstract
4-(((4-Cyanophenyl)(4H-1,2,4-triazol-4-yl)amino)methyl)phenyl sulfamate (6 a) was the first dual aromatase-sulfatase inhibitor (DASI) reported. Several series of its derivatives with various linker systems between the steroid sulfatase (STS) and the aromatase inhibitory pharmacophores were synthesised and evaluated in JEG-3 cells. The X-ray crystal structures of the aromatase inhibitors, DASI precursors 42 d and 60, and DASI 43 h were determined. Nearly all derivatives show improved in vitro aromatase inhibition over 6 a but decreased STS inhibition. The best aromatase inhibitor is 42 e (IC50=0.26 nM) and the best DASI is 43 e (IC50 aromatase=0.45 nM, IC50 STS=1200 nM). SAR for aromatase inhibition shows that compounds containing an alkylene- and thioether-based linker system are more potent than those that are ether-, sulfone-, or sulfonamide-based, and that the length of the linker has a limited effect on aromatase inhibition beyond two methylene units. Compounds 43 d-f were studied in vivo (10 mg kg-1, single, p.o.). The most potent DASI is 43 e, which inhibited PMSG-induced plasma estradiol levels by 92 % and liver STS activity by 98 % 3 h after dosing. These results further strengthen the concept of designing and developing DASIs for potential treatment of hormone-related cancers.
-
-
Item type: Article ID code: 13190 Dates: DateEventSeptember 2008PublishedSubjects: Medicine > Therapeutics. Pharmacology
Medicine > Pharmacy and materia medica
Science > MicrobiologyDepartment: Faculty of Science > Strathclyde Institute of Pharmacy and Biomedical Sciences Depositing user: Ms Ann Barker-Myles Date deposited: 12 Oct 2009 11:39 Last modified: 03 Jan 2025 22:29 URI: https://strathprints.strath.ac.uk/id/eprint/13190