Non-Keplerian orbits using low thrust, high ISP propulsion systems

McKay, Robert and Macdonald, Malcolm and Bosquillon de Frescheville, Francois and Vasile, Massimiliano and McInnes, Colin and Biggs, James (2009) Non-Keplerian orbits using low thrust, high ISP propulsion systems. In: 60th International Astronautical Congress, 2009-10-12 - 2009-10-16.

[thumbnail of strathprints0012919]
Preview
Text. Filename: strathprints0012919.pdf
Accepted Author Manuscript

Download (2MB)| Preview

Abstract

The technology of high ISP propulsion systems with long lifetime and low thrust is improving, and opens up numerous possibilities for future missions. The use of continuous thrust can be applied in all directions including prependicular to the flight direction to force the spacecraft out of a natural orbit (or A orbit) into a displaced orbit (a non-Keplerian or B orbit): such orbits could have a diverse range of potential applications. Using the equations of motion we generate a catalogue of these B orbits corresponding to displaced orbits about the Sun, Mercury, Venus, Earth, the Moon, Mars, Phobos and Deimos, the dwarf planet Ceres, and Saturn. For each system and a given thrust, contours both in and perpendicular to the plane of the ecliptic are produced in the rotating frame, in addition to an equithrust surface. Together these illustrate the possible domain of B orbits for low thrust values between 0 and 300mN. Further, the required thrust vector orientation for the B orbit is obtained and illustrated. The sub-category of solar sail enabled missions is also considered. Such a catalogue of B orbits enables an efficient method of indentifying regions of possible displaced orbits for potential use in future missions.

ORCID iDs

McKay, Robert, Macdonald, Malcolm ORCID logoORCID: https://orcid.org/0000-0003-4499-4281, Bosquillon de Frescheville, Francois, Vasile, Massimiliano ORCID logoORCID: https://orcid.org/0000-0001-8302-6465, McInnes, Colin and Biggs, James;