Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Model reduction of cell signal transduction networks via hybrid inference method

Jia, J.F. and Liu, T.Y. and Yue, H. and Wang, H. (2008) Model reduction of cell signal transduction networks via hybrid inference method. Journal of the Graduate School of the Chinese Academy of Sciences, 25 (3). pp. 355-366.

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The mathematical model of cell signal transduction networks is highly nonlinear and complex, which involves a large number of variables and kinetics parameters. How to effectively develop the reduced-order model is a major problem for analyzing complex systems. In this work, a model reduction strategy via hybrid inference method is proposed for complex signal transducion networks. This approach synthesizes metabolic control analysis, sensitivity analysis, principal component analysis, and flux analysis to reduce the dimensions of the model and to decrease the number of the biological reactions. Using NF-κB signaling pathway as an example, the detailed model consists of 24 ordinary differential equations and 64 parameters. According to the model reduction strategy, the reduced-order model is composed of 17 ordinary differential equations, one algebraic equation, and 52 parameters. The simulation results demonstrate that the reduced-order model quantitatively predicts the dynamic characteristics of the system output, which are much the same as that of the detailed model. Therefore, the model reduction strategy provides guidance for the analysis and design of complex cell networks. It is more effective and more straightforward to estimate the unknown parameters by means of the reduced-order model.