Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Lithiated alpha-cyanophosphonates: self-assembly of two-dimensional molecular sheets composed of interconnected twenty-four membered rings

Henderson, K.W. and Kennedy, A.R. and McKeown, A.E. and Strachan, D. (2000) Lithiated alpha-cyanophosphonates: self-assembly of two-dimensional molecular sheets composed of interconnected twenty-four membered rings. Journal of the Chemical Society, Dalton Transactions, 2000 (23). pp. 4348-4353. ISSN 0300-9246

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reaction of the phosphonates (RO)2P(O)CH2CN (R = Et I or PriII) with one molar equivalent of LiNPri2 in THF gave the metallated complexes [(RO)2P(O)CHCNLi·THF] (R = Et 1 or Pri2). Crystallographic analyses of them reveal that they form dimeric Li2(O=P)2 units, which further aggregate through inter-dimer association via the nitrile of the phosphonate to form cross-linked, polymeric network structures. These sheets align in the crystals to form a patchwork arrangement of molecular channels. The carbanionic centres of the phosphonates are devoid of Li-C contacts and almost perfectly planar. In solution, the dimeric units most likely remain intact but the nitrile is involved in chelation to a metal centre via intra-dimer association. Theoretical calculations show that chelation of the nitrile unit is a viable mode of bonding.