Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Applying series braking resistors to improve the stability of low inertia synchronous generators

Tumilty, R. and Bright, C.G. and Burt, G.M. and Anaya-Lara, Olimpo and McDonald, J.R. (2007) Applying series braking resistors to improve the stability of low inertia synchronous generators. In: CIRED 2007, 2007-05-21 - 2007-05-24.

[img]
Preview
PDF
CIRED2007_0045_paper.pdf - Final Published Version

Download (269kB) | Preview

Abstract

Widely held concerns over the environmental impact of emissions from large fossil fuelled generating plants are serving to promote the connection of renewable or sustainable generation onto distribution networks. Many such generators are synchronous machines with low values of inertia, and thus possess short critical clearance times to avoid the onset of transient instability. With fault clearance times of up to 1s occurring in distribution networks, there is the potential for a growing problem as distributed generation makes up a larger proportion of installed capacity. This paper proposes the use of series braking resistors that are switched into circuit at the generator terminals as a means of improving transient stability, and thus avoid, or at least defer major upgrades to distribution system protection