Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Dispatch optimisation of renewable energy generation participating in a liberalised electricity market

Bhandari, N.M. and Burt, G.M. and Dahal, K. and Galloway, S.J. and McDonald, J.R. (2007) Dispatch optimisation of renewable energy generation participating in a liberalised electricity market. International Journal of Emerging Electric Power Systems, 8 (3). ISSN 1553-779X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper focuses on dispatching of mixed generation portfolio of renewable energy (RE) and non-RE (firm) units. A genetic algorithm (GA) based rolling window approach is developed for solving economic dispatch (ED) problem. Profit maximisation ED problem is formulated and solved which also considers New Electricity Trading Arrangements for England and Wales (NETA) market features. In this problem, a penalty approach is used in order to consider intermittency problem of RE generation output. A single GA technique is also applied for solving the formulated problem. Of these, GA based rolling window approach achieved promising results for a Generator Company, which holds both renewable and fossil fuel units and participates in the short-term market trading. It is also shown that a Generator Company can get more profit by using the possibility of increase in generation output of RE sources from their forecast positions by combining both RE and non-RE units and participating in a NETA-like market trading. This approach allows to some extent the management of uncertainty problem of RE generation output, which also accounts risk associated with power non-delivery.