Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis

He, Shu and Soraghan, John J. and O'Reilly, Brian F. (2007) Biomedical image sequence analysis with application to automatic quantitative assessment of facial paralysis. EURASIP Journal on Image and Video Processing, 2007. ISSN 1687-5176

[img]
Preview
Text (He-eatl-EURASIP-JASP-2007-Automatic-quantitative-assessment-of-facial-paralysis)
He_eatl_EURASIP_JASP_2007_Automatic_quantitative_assessment_of_facial_paralysis.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (3MB)| Preview

    Abstract

    Facial paralysis is a condition causing decreased movement on one side of the face. A quantitative, objective, and reliable assessment system would be an invaluable tool for clinicians treating patients with this condition. This paper presents an approach based on the automatic analysis of patient video data. Facial feature localization and facial movement detection methods are discussed. An algorithm is presented to process the optical flow data to obtain the motion features in the relevant facial regions. Three classification methods are applied to provide quantitative evaluations of regional facial nerve function and the overall facial nerve function based on the House-Brackmann scale. Experiments show the radial basis function (RBF) neural network to have superior performance.