Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

CFD modelling of double-skin facades with venetian blinds

Ji, Y. and Cook, M.J. and Hanby, V.I. and Infield, D.G. and Loveday, D.L. and Mei, L. (2007) CFD modelling of double-skin facades with venetian blinds. In: Building Simulation 2007, 2007-09-03 - 2007-09-06.

Accepted Author Manuscript

Download (400kB)| Preview


    This paper describes CFD modelling of Double Skin Façades (DSF) with venetian blinds inside the façade cavity. The 2-D modelling work investigates the coupled convective, conductive and radiative heat transfer through the DSF system. The angles of the venetian blind can be adjusted and a series of angles (0, 30, 45, 60 and 80 degrees) has been modelled. The modelling results are compared with the measurements from a section of façade tested within a solar simulator and with predictions from a component based nodal model. Agreement between the three methods is generally good. Discrepancies in the results are generally caused by the simplification of the CFD model resulting less turbulence mixing within the façade cavity. The CFD simulation output suggests that the presence of the venetian blinds has led up to 35 percent enhancement in natural ventilation flow for the façade cavity and 75 percent reduction in heat loads for the internal environment. It was also found that little changes of the convective heat transfer coefficients on the glazing surfaces have been caused by the venetian blinds with different angles.