Direct active and reactive power control of DFIG for wind energy generation
Xu, L. and Cartwright, P. (2006) Direct active and reactive power control of DFIG for wind energy generation. IEEE Transactions on Energy Conversion, 21 (3). pp. 750-758. ISSN 0885-8969 (https://doi.org/10.1109/TEC.2006.875472)
Full text not available in this repository.Request a copyAbstract
This paper presents a new direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind energy generation system. The strategy is based on the direct control of stator active and reactive power by selecting appropriate voltage vectors on the rotor side. It is found that the initial rotor flux has no impact on the changes of the stator active and reactive power. The proposed method only utilizes the estimated stator flux so as to remove the difficulties associated with rotor flux estimation. The principles of this method are described in detail in this paper. The only machine parameter required by the proposed DPC method is the stator resistance whose impact on the system performance is found to be negligible. Simulation results on a 2 MW DFIG system are provided to demonstrate the effectiveness and robustness of the proposed control strategy during variations of active and reactive power, rotor speed, machine parameters, and converter dc link voltage.
ORCID iDs
Xu, L. ORCID: https://orcid.org/0000-0001-5633-7866 and Cartwright, P.;-
-
Item type: Article ID code: 12143 Dates: DateEventSeptember 2006PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Strathprints Administrator Date deposited: 24 Nov 2011 19:28 Last modified: 29 Nov 2024 16:55 URI: https://strathprints.strath.ac.uk/id/eprint/12143