Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Channel and interference analysis for wireless sensor networks

Darbari, F. and Glover, I.A. and Stewart, R.W. (2007) Channel and interference analysis for wireless sensor networks. In: IEEE International Conference on Communications 2007, 2007-06-24 - 2007-06-28, Scottish Exhibition & Conference Centre (SECC).

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents preliminary investigations of the short range (~10 cm) narrowband wireless channel appropriate to specks operating in the 2.4 GHz ISM band. Path loss measurements have been made in the laboratory using rectaxial antennas at 2.45 GHz. The transmitted signal is an unmodulated carrier and the receiver is a spectrum analyzer. Characterization of signal power variations are important for system design and so path loss and fading models have been derived. The paper presents a comprehensive narrowband channel model (including interference due to neighboring nodes) for application to asynchronous short-range wireless networks. Medium access is assumed to be CSMA based and SIR will therefore depend on inhibition distance and antenna characteristics. Aggregated interference due to neighboring nodes has been calculated. Finally, cumulative SIR values have been used to construct link budgets and bit error rates.