Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines

Ramtharan, G. and Jenkins, N. and Anaya-Lara, O. and Bossanyi, E. (2007) Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines. Wind Energy, 10 (4). pp. 293-301. ISSN 1095-4244

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

An assessment of the impact that the representation of rotor structural dynamics has on the electrical transient performance of fixed-speed induction generators (FSIGs) and doubly fed induction generators (DFIGs) wind turbines is presented. A three-mass model that takes into account not only the shaft flexibility but also the blade flexibility in the structural dynamics is developed and used to derive an effective two-mass model of the drive train dynamics, which represents the dominant natural frequency of vibration of the rotor structure. For the purposes of this investigation, the dynamic performance of both FSIG and DFIG wind turbines is evaluated during electrical transients such as a three-phase fault in the network. The studies are conducted in the software code Bladed, where a detailed representation of the structural dynamics is used to derive the three-mass model and the effective two-mass model. Simulation results which illustrate how these representations of the rotor dynamics affect the response of the wind turbine during the fault are presented and discussed.