Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines
Ramtharan, G. and Jenkins, N. and Anaya-Lara, O. and Bossanyi, E. (2007) Influence of rotor structural dynamics representations on the electrical transient performance of FSIG and DFIG wind turbines. Wind Energy, 10 (4). pp. 293-301. ISSN 1095-4244 (https://doi.org/10.1002/we.221)
Full text not available in this repository.Request a copyAbstract
An assessment of the impact that the representation of rotor structural dynamics has on the electrical transient performance of fixed-speed induction generators (FSIGs) and doubly fed induction generators (DFIGs) wind turbines is presented. A three-mass model that takes into account not only the shaft flexibility but also the blade flexibility in the structural dynamics is developed and used to derive an effective two-mass model of the drive train dynamics, which represents the dominant natural frequency of vibration of the rotor structure. For the purposes of this investigation, the dynamic performance of both FSIG and DFIG wind turbines is evaluated during electrical transients such as a three-phase fault in the network. The studies are conducted in the software code Bladed, where a detailed representation of the structural dynamics is used to derive the three-mass model and the effective two-mass model. Simulation results which illustrate how these representations of the rotor dynamics affect the response of the wind turbine during the fault are presented and discussed.
ORCID iDs
Ramtharan, G., Jenkins, N., Anaya-Lara, O. ORCID: https://orcid.org/0000-0001-5250-5877 and Bossanyi, E.;-
-
Item type: Article ID code: 11800 Dates: DateEvent2007Published7 March 2007Published OnlineSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Strathprints Administrator Date deposited: 28 Sep 2011 10:21 Last modified: 22 Nov 2024 13:19 URI: https://strathprints.strath.ac.uk/id/eprint/11800