Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

An improved algorithm for assessing the overall quantisation Error in FPGA based CORDIC systems computing a vector magnitude

Alexander, S.W. and Stewart, R.W. and Pfann, E. (2006) An improved algorithm for assessing the overall quantisation Error in FPGA based CORDIC systems computing a vector magnitude. Microprocessors and Microsystems, 31 (2). pp. 87-93. ISSN 0141-9331

Full text not available in this repository. Request a copy from the Strathclyde author


The CORDIC (coordinate rotation digital computer) algorithm is an iterative technique that can be used to compute many arithmetic functions using mainly shifts and additions making it ideal for FPGA implementation. In the early 1990s, Yu Hen Hu developed an equation for the overall quantisation error (OQE) experienced by the CORDIC algorithm when computing a vector magnitude. This equation could be used to find the most efficient architecture that would give a desired level of accuracy thus avoiding a trial and error approach. In this paper, we note that in fact the OQE overestimates the error in many cases, thus yielding inefficient architectures. Hence, this paper presents an updated equation for the OQE which is more accurate in predicting the error. To illustrate the improved accuracy of the new OQE expression, comparisons are made between CORDIC systems found using both versions of the OQE algorithm and Direct systems computing a vector magnitude. This comparison is of interest as it shows that CORDIC systems based on the new OQE expression use considerably fewer FPGA resources than CORDIC systems found using the original algorithm or equivalent direct designs. Given the widespread use of CORDIC in FPGA designs, particularly in DSP, this is significant.