Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Beam divergence measurements of InGaN/GaN micro-array light-emitting diodes using confocal microscopy

Griffin, C. and Gu, E. and Choi, H.W. and Jeon, C.W. and Girkin, J.M. and Dawson, M.D. and McConnell, G. (2005) Beam divergence measurements of InGaN/GaN micro-array light-emitting diodes using confocal microscopy. Applied Physics Letters, 86 (4). ISSN 0003-6951

[img]
Preview
Text (strathprints000116)
strathprints000116.pdf - Accepted Author Manuscript

Download (312kB) | Preview

Abstract

The recent development of high-density, two-dimensional arrays of micrometer-sized InGaN/GaN light-emitting diodes (micro-LEDs) with potential applications from scientific instrumentation to microdisplays has created an urgent need for controlled manipulation of the light output from these devices. With directed light output these devices can be used in situations where collimated beams or light focused onto several thousand matrix points is desired. In order to do this effectively, the emission characteristics of the devices must be fully understood and characterized. Here we utilize confocal microscopy to directly determine the emission characteristics and angular beam divergences from the individual micro-LED elements. The technique is applied to both top (into air) and bottom (through substrate) emission in arrays of green (540 nm), blue (470 nm), and UV (370 nm) micro-LED devices, at distances of up to 50 µm from the emission plane. The results are consistent with simple optical modeling of the expected beam profiles.