Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

A distributed fibre optic sensor for liquid hydrocarbon detection

Maclean, A. and Moran, C. and Johnstone, W. and Culshaw, B. and Marsh, D. and Andrews, G.M. (2001) A distributed fibre optic sensor for liquid hydrocarbon detection. In: Smart Structures and Materials 2001 Conference, 2001-03-05 - 2001-03-08.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A distributed fibre optic sensor for the detection and location of hydrocarbon fuel spills is presented. The sensor is designed such that liquid swelling polymers transduce their swelling into a microbend force on an optical fibre when exposed to hydrocarbon fuels. Interrogation of the sensor using standard Optical Time Domain Reflectometry (OTDR) techniques provides the possibility of rapidly detecting and locating target hydrocarbon fuels and chemicals at multiple positions along the sensor length. Events can typically be located to a precision of 2 m over a 10 km sensor length. Sensor response time on exposure to the hydrocarbon fuel is within 30 seconds. A detailed explanation of the operational characteristics of the sensor and the underlying technology utilised in its operation is given. Experimental tests using prototype sensors to simultaneously detect three separate 50 centimetre-long events are described. The characteristics of the sensor response in a range of hydrocarbon fuels under varying environmental conditions were investigated. Some of the safety advantages in using the sensor and its practical implementation in continuous monitoring of pipelines or fuel containment vessels are discussed.