Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Immunisation of male mice with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and t-helper epitopes suppresses fertility in vivo

Khan, M.A.H. and Ferro, V.A. and Koyama, M. and Kinugasa, Y. and Song, M. and Ogita, K. and Murata, Y. and Kimura, T. (2007) Immunisation of male mice with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and t-helper epitopes suppresses fertility in vivo. Vaccine, 25 (18). pp. 3544-3553. ISSN 0264-410X

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Immunisation against mammalian gonadotrophin releasing hormone (GnRH-I) linked to large carrier proteins has been shown to disrupt fertility. However, various studies have shown that the carrier protein causes epitope suppression of the hapten response, resulting in short-lived immunoneutralisation, followed by a return of fertility. A range of strategies has been used to resolve this, with limited success. The aim of this study was to construct a plasmid DNA vaccine encoding GnRH-I and T-helper epitopes. A 498 bp long vaccine construct in pcDNA3.1+ was administered to male mice in conjunction with a Hemagglutinating Virus of Japanese Envelop (HVJ-E) vector or in saline solution. The vaccine efficacy was evaluated in terms of GnRH-I specific IgG antibody response, serum testosterone levels, testicular spermatogenesis and the ability to produce offspring. The vaccine appeared to induce higher anti-GnRH-I IgG antibody response and insult the fertility axis, which was characterised by a drop of epididymal sperm counts, reduction of serum testosterone levels, suppressed testicular spermatogenesis and a significant decrease in litter numbers compared to control animals. The end-point vaccine efficacy was much higher in the HVJ-E vector mediated immunisation, than in saline alone.