Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Immunisation of male mice with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and t-helper epitopes suppresses fertility in vivo

Khan, M.A.H. and Ferro, V.A. and Koyama, M. and Kinugasa, Y. and Song, M. and Ogita, K. and Murata, Y. and Kimura, T. (2007) Immunisation of male mice with a plasmid DNA vaccine encoding gonadotrophin releasing hormone (GnRH-I) and t-helper epitopes suppresses fertility in vivo. Vaccine, 25 (18). pp. 3544-3553. ISSN 0264-410X

Full text not available in this repository. Request a copy from the Strathclyde author


Immunisation against mammalian gonadotrophin releasing hormone (GnRH-I) linked to large carrier proteins has been shown to disrupt fertility. However, various studies have shown that the carrier protein causes epitope suppression of the hapten response, resulting in short-lived immunoneutralisation, followed by a return of fertility. A range of strategies has been used to resolve this, with limited success. The aim of this study was to construct a plasmid DNA vaccine encoding GnRH-I and T-helper epitopes. A 498 bp long vaccine construct in pcDNA3.1+ was administered to male mice in conjunction with a Hemagglutinating Virus of Japanese Envelop (HVJ-E) vector or in saline solution. The vaccine efficacy was evaluated in terms of GnRH-I specific IgG antibody response, serum testosterone levels, testicular spermatogenesis and the ability to produce offspring. The vaccine appeared to induce higher anti-GnRH-I IgG antibody response and insult the fertility axis, which was characterised by a drop of epididymal sperm counts, reduction of serum testosterone levels, suppressed testicular spermatogenesis and a significant decrease in litter numbers compared to control animals. The end-point vaccine efficacy was much higher in the HVJ-E vector mediated immunisation, than in saline alone.