Picture child's feet next to pens, pencils and paper

Open Access research that is helping to improve educational outcomes for children

Strathprints makes available scholarly Open Access content by researchers in the School of Education, including those researching educational and social practices in curricular subjects. Research in this area seeks to understand the complex influences that increase curricula capacity and engagement by studying how curriculum practices relate to cultural, intellectual and social practices in and out of schools and nurseries.

Research at the School of Education also spans a number of other areas, including inclusive pedagogy, philosophy of education, health and wellbeing within health-related aspects of education (e.g. physical education and sport pedagogy, autism and technology, counselling education, and pedagogies for mental and emotional health), languages education, and other areas.

Explore Open Access education research. Or explore all of Strathclyde's Open Access research...

Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin

Watson, D. G. and Peyfoon, E. and Zheng, L. and Lu, D. and Seidel, V. and Johnston, B. and Parkinson, J. A. and Fearnley, J. (2006) Application of principal components analysis to 1H-NMR data obtained from propolis samples of different geographical origin. Phytochemical Analysis, 17 (5). pp. 323-331. ISSN 0958-0344

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Propolis is a widely used natural remedy and a range of biological activities have been attributed to it. The chemical composition of propolis is highly variable and its quality is often controlled on the basis of one or two marker compounds. In order to progress towards a method for the quality control of this complex material, HPLC and 1H-NMR approaches as methods of quality control have been compared. HPLC analyses of 43 samples of propolis were carried out and six marker compounds were quantified in each sample. The same samples were analysed using 1H-NMR and the spectra were then converted into their first derivative forms and digitised using the software application MestRe-C. The digitised data were subjected to principal component analysis using the software application Simca-P. It was found that the chemical composition of propolis mapped well according to the geographical origins of the samples studied when the first three principal components were used to display them. In addition, each sample was assessed for anti-oxidant activity, and the results were then overlaid onto the sample groupings according to 1H-NMR data. It was observed that anti-oxidant properties also mapped quite well according to geographical origin.