Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Relationships of overall estery aroma character in lagers with volatile headspace congener concentrations

Piggott, J.R. and Techakriengkrai, I. and Paterson, A. and Taidi, B. (2006) Relationships of overall estery aroma character in lagers with volatile headspace congener concentrations. Journal of the Institute of Brewing, 112 (1). pp. 41-49. ISSN 0046-9750

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In lager beers the intensity of “estery” aroma character is re-garded as an important component of sensory quality, but its origins are somewhat uncertain. Overall “estery” aroma intensity was predicted from capillary gas chromatographic (GC) data following solid phase micro extraction (SPME) of headspaces. Estery character was scored in 23 commercial lagers using rank-rating, allowing assessors (13) constant access to a range of appropriate standards. From univariate data analysis, all asses-sors behaved similarly and lagers fell into three significantly different groups: low (1), high (1) and intermediate (21). The quantification of 36 flavour volatiles by SPME of headspaces was reproducible and principal component analysis explained 91% total variance. Multiple linear regression could utilise only a restricted (26) set of flavour volatiles, whereas partial least square regression, that considered all flavour components, showed significant differences and improved prediction. How-ever, an artificial neural network that could compensate for non-linearities and interactions in ester perception gave the most robust prediction at R2 = 0.88.