Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Dissecting the components of the humoral immune response elicited by DNA vaccines

Garside, P. and Rush, C.M. and Mitchell, T.J. and Burke, B. (2006) Dissecting the components of the humoral immune response elicited by DNA vaccines. Vaccine, 24. pp. 776-784. ISSN 0264-410X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Although DNA vaccines appear to be efficient at inducing strong cellular immune responses, a number of questions remain regarding their ability to induce humoral immunity. The essential components for generating an antibody response include B and T cell recognition of antigen, subsequent activation, clonal expansion of each lymphocyte type and migration of T cells into B cell follicles to provide help, all leading to germinal centre formation and antibody production. We have employed a double adoptive transfer system based on ovalbumin (OVA)-specific CD4+ DO11.10 T cells and hen egg lysozyme (HEL)-specific MD4 B cells to assess all of these parameters in the context of DNA vaccination in vivo. We find that vaccination with DNA constructs expressing an OVA–HEL gene fusion (encoding contiguous T and B cell epitopes) can induce T cell activation, clonal expansion and migration into B cell follicles accompanied by B cell activation, blastogenesis, expansion and antibody production. These findings show that DNA vaccination can induce all of the components required for humoral immunity and also provide a system for in depth analysis of factors that influence the development of antibody responses. Such strategies may facilitate the rational design of vaccines capable of inducing effective humoral immunity.