Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

Cephalexin: a channel hydrate

Kennedy, A.R. and Okoth, M.O. and Sheen, D.B. and Sherwood, J.N. and Teat, S.J. and Vrcelj, R.M. (2003) Cephalexin: a channel hydrate. Acta Crystallographica Section C: Crystal Structure Communications, 59 (11). o650-o652. ISSN 0108-2701

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The antibiotic cephalexin [systematic name: d-7-(2-amino-2-phenyl­acet­amido)-3-methyl-8-oxo-5-thia-1-aza­bi­cyclo­[4.2.0]oct-2-ene-2-carboxyl­ic acid] forms a range of isomorphic solvates, with the maximum hydration state of two water mol­ecules formed only at high relative humidities. The water content of the structure reported here (C16H17N3O4S·1.9H2O) falls just short of this configuration, having three independent cephalexin mol­ecules, one of which is disordered, and 5.72 observed water mol­ecules in the asymmetric unit. The facile nature of the cephalexin solvation/desolvation process is found to be facilitated by a complex channel structure, which allows free movement of solvent in the crystallographic a and b directions.