Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Effect of multilayer barriers on the optical properties of GaInNAs single quantum-well structures grown by metalorganic vapor phase epitaxy

Sun, H.D. and Clark, A.H. and Calvez, S. and Dawson, M.D. and Kim, K.S. and Kim, T. and Park, Y.J. (2005) Effect of multilayer barriers on the optical properties of GaInNAs single quantum-well structures grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 87. pp. 1-3. ISSN 0003-6951

[img]
Preview
PDF
307875.pdf
Preprint

Download (81kB) | Preview

Abstract

We report on the effects of combined strain-compensating and strain-mediating layers of various widths on the optical properties of 1.3 μm GaInNAs∕GaAs single quantum well structures grown by metalorganic vapor phase epitaxy (MOVPE). While the emission wavelength of GaInNAs∕GaAs quantum wells can be redshifted by the adoption of strain-compensated GaNAs layers, the material quality is degraded by the increased stress at the well∕barrier interface. This detrimental effect can be cured by inserting a strain-mediating InGaAs layer between them. Contrary to what is expected, however, the emission wavelength is blueshifted by the insertion of the InGaAs layer, which is attributed to the reduced N incorporation due to the improved interface quality. Our results indicate that the optical properties of MOVPE-grown GaInNAs∕GaAs quantum wells can be optimized in quantum efficiency and emission wavelength by combination of strain-compensating and strain-mediating layers with suitable characteristics.