Picture of smart phone in human hand

World leading smartphone and mobile technology research at Strathclyde...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including by Strathclyde researchers from the Department of Computer & Information Sciences involved in researching exciting new applications for mobile and smartphone technology. But the transformative application of mobile technologies is also the focus of research within disciplines as diverse as Electronic & Electrical Engineering, Marketing, Human Resource Management and Biomedical Enginering, among others.

Explore Strathclyde's Open Access research on smartphone technology now...

Cascaded commutation circuit for a hybrid DC breaker with dynamic control on fault current and DC breaker voltage

Shan, Yunhai and Lim, Tee C. and Finney, Stephen J. and Guang, Weixiao and Williams, Barry W. and Holliday, Derrick and Ding, Xiao (2017) Cascaded commutation circuit for a hybrid DC breaker with dynamic control on fault current and DC breaker voltage. IET Power Electronics. ISSN 1755-4535

Text (Shan-etal-IETPE2017-Cascaded-commutation-circuit-for-a-hybrid-DC-breaker)
Shan_etal_IETPE2017_Cascaded_commutation_circuit_for_a_hybrid_DC_breaker.pdf - Accepted Author Manuscript

Download (498kB) | Preview


This paper proposed a cascaded commutation circuit based on current commutation approach for low-to-medium voltage DC fault current interruption, without snubber circuits, which slows the fault current di/dt prior to current-zero and the rate of rise of the transient recovery voltage dv/dt across the mechanical breaker contacts after current zero. The proposed dynamic control of the fault current di/dt and circuit breaker voltage dVVCB/dt increase the fault current interruption capabilityat the first and second current-zeros. Detailed mathematical equations are presented to evaluate the operational waveform profile and the validity of the cascaded commutation principle is confirmed by simulation and experimental results at 600Vdc, 110A and 330A.