Picture of wind turbine against blue sky

Open Access research with a real impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs.

The Energy Systems Research Unit (ESRU) within Strathclyde's Department of Mechanical and Aerospace Engineering is producing Open Access research that can help society deploy and optimise renewable energy systems, such as wind turbine technology.

Explore wind turbine research in Strathprints

Explore all of Strathclyde's Open Access research content

Towards a novel carbon device for the treatment of sepsis

Sandeman, S.R. and Howell, C.A. and Phillips, G.J. and Lloyd, A.W. and Mikhalovsky, S.V. and Davies, J.G. and Murphy, M.C. and Melillo, M. and Barnes, L.M. and Tennison, S.R. and Kozynchenko, O.P. and Gaylor, J.D.S. and Courtney, J.M. (2004) Towards a novel carbon device for the treatment of sepsis. In: The American Carbon Society, 2004-07-11 - 2004-07-16.

[img]
Preview
PDF
2004_B012.pdf - Submitted Version

Download (254kB) | Preview

Abstract

Sepsis is a systemic inflammatory response to infection in which the balance of pro- andanti-inflammatory mediators, which normally isolate and eliminate infection, is disrupted[1]. Gram negative sepsis is initiated by bacterial endotoxin release which activatesmacrophages and circulating monocytes to release TNF and IL-1β followed by IL-6 andother inflammatory cytokines [2]. As the disease progresses, an unregulatedinflammatory response results in, tissue injury, haematological dysfunction and organdysfunction. Severe sepsis, involving organ hypoperfusion may be further complicatedby hypotension that is unresponsive to adequate fluid replacement, resulting in septicshock and finally death [3].Despite improvements in anti-microbial and supportive therapies, sepsis remains asignificant cause of morbidity and mortality in ICUs worldwide [4]. The complexity ofprocesses mediating the progression of sepsis suggests that an extracorporeal devicecombining blood filtration with adsorption of a wide range of toxins, and inflammatorymediators offers the most comprehensive treatment strategy. However, no such deviceexists at present. A novel, uncoated, polymer pyrolysed synthetic carbon device isproposed which combines the superior adsorption properties of uncoated activatedcarbons with the capacity to manipulate porous structure for controlled adsorption oftarget plasma proteins and polypeptides [5]. Preliminary haemocompatibility andadsorptive capacity was assessed using a carbon matrix prototype.