Picture of two heads

Open Access research that challenges the mind...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. Strathprints provides access to thousands of Open Access research papers by University of Strathclyde researchers, including those from the School of Psychological Sciences & Health - but also papers by researchers based within the Faculties of Science, Engineering, Humanities & Social Sciences, and from the Strathclyde Business School.

Discover more...

The metabolism of kaempferol in primary hepatocytes cultured on collagen films and gels of different composition

Kataropoulou, M. and Henderson, C.J. and Grant, M.H. (2002) The metabolism of kaempferol in primary hepatocytes cultured on collagen films and gels of different composition. In: RSC-DMG 2002: New Technologies in Drug Discovery, 2002-12-12 - 2002-12-13.

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Metabolic activity is unstable in primary hepatocyte cultures and is influenced by the matrix composition.The effect of incorporating 20% chondroitin-6-sulphate(Ch6SO4), a glycosaminoglycan, into collagen films and gels(0.3%w/v), and crosslinking the films and gels with 1,6-diaminohexane(DAH)on the glucuronidation of kaempferol by primary rat hepatocytes cultured for 48h and 7 days was investigated. Hepatocytes isolated from male Sprague-Dawley rats by collagenase perfusion were cultured(3x106/60mm Petri dish)in Chee's medium with 5% v/v foetal calf serum. Cells were incubated with 100mM kaempferol for 1h at 378C and the glucuronides( K1 and K2)were measured by HPLC. Cells cultured on collagen films formed only the K2 metabolite after 48h in culture. The addition of Ch6SO4 or DAH significantly increased the formation of this glucuronide. However, cells seeded on gels showed no metabolism after 48h in culture. By 7 days in culture, both K1 and K2 glucuronides were formed in cells on all the different films and gels. The formation of K1 glucuronide was significantly higher with the addition of Ch6SO4 to the films. K2 glucuronide was significantly higher in all of the crosslinked films compared to the plain films. Modification of collagen based substrates may improve cultured hepatocyte phenotype.