Picture of a sphere with binary code

Making Strathclyde research discoverable to the world...

The Strathprints institutional repository is a digital archive of University of Strathclyde research outputs. It exposes Strathclyde's world leading Open Access research to many of the world's leading resource discovery tools, and from there onto the screens of researchers around the world.

Explore Strathclyde Open Access research content

Relaxation of compressively strained AlInN on GaN

Lorenz, K. and Franco, N. and Alves, E. and Pereira, S. and Watson, I.M. and Martin, R.W. and O'Donnell, K.P. (2008) Relaxation of compressively strained AlInN on GaN. Journal of Crystal Growth, 310 (18). pp. 4058-4064. ISSN 0022-0248

Full text not available in this repository. (Request a copy from the Strathclyde author)

Abstract

Epitaxial layers of wurtzite-phase Al1−xInxN, 120 nm thick with (0 0 0 1) orientation, were grown by metal organic chemical vapour deposition on GaN buffer layers at setpoint temperatures between 760 and 840 °C. For growth temperatures 800 °C, the AlInN layers grew with uniform composition, pseudomorphic with the underlying GaN buffer layer. In the temperature range studied, the InN fractions are a linear function of the setpoint temperature and straddle the near-lattice-match composition around Al0.83In0.17N. Lowering the growth temperature to 760 °C caused a compositional grading, a marked change in surface morphology, and a reduction in AlInN crystal quality. The resulting AlInN layer consists of a compressively strained interfacial layer with a composition of Al0.76In0.24N, and a mostly relaxed near-surface layer with a composition of Al0.81In0.19N. Atomic force microscopy suggests that a transition to a three-dimensional growth mode accompanies the structural relaxation and change in composition.